Expanding possibilities in precise manipulation: introducing the new TIAGo SEA Arm

Close up of the brand new Series Elastic Actuators (SEA) arms for expanding possibilities in the realm of precise mobile manipulation for the two mobile manipulators TIAGo and TIAGo Pro

Development of the new TIAGo SEA arm through the CANOPIES project: enabling precision agriculture

The TIAGo family of robots are well known in the field of mobile manipulation for combining perception, navigation, manipulation, and Human-Robot Interaction skills. TIAGo robots have applications in diverse research areas, from Ambient-Assisted Living to Healthcare and Light Industry. The TIAGo family offers customisation options, including the choice of one or two arms and differential or omnidrive bases. At PAL Robotics we are happy to announce the introduction of a new addition to the TIAGo customisation lineup – the TIAGo SEA arm, which has been designed to address a wide range of research needs. 

Advancements in the field of mobile manipulation have enabled robots to perform tasks in diverse environments. Yet, the field of mobile manipulation faces multiple challenges, from precise perception and object recognition to accurate control and Human-Robot Collaboration.

The latest addition to the TIAGo family, the SEA arm, was initially developed during the EU project CANOPIES. CANOPIES is revolutionising agriculture by facilitating collaboration between farm workers and robots for tasks like harvesting and pruning in table-grape vineyards. In order to address these challenges, significant upgrades were made to the robot’s arm during the project. 

Specifications of the new TIAGo SEA arm including joint brakes and Series Elastic Actuators

The new TIAGo SEA arm boasts impressive specifications and benefits that range from  enhanced safety to a higher arm reach. These are the main specifications and benefit of the new arm: 

  • 7 Degrees of Freedom (DoF): The redundancy of the arm provides exceptional dexterity, combining complex movements and precise manipulation.
  • Extended Reach (96cm): A greater workspace and higher reach expand the range of applications.
  • New actuation: The TIAGo Pro arms feature a new actuation system that is tailored for human-robot collaboration by providing enhanced compliance capabilities.
  • Joint Brakes: These enhance safety, enabling safe collaboration between robots and humans. Joint brakes facilitate emergency stops and prevent excessive force exertion during interactions.
  • Ethercat Bus at 1 KHz: Real-time communication at high speeds, perfect for applications demanding rapid data exchange and synchronisation.
  • ISO 9409-1 Mounting Flange: Standardised end-effector attachment for effortless interchangeability.

Impedance Control and gravity compensation: adapting to diverse applications

The new arm incorporates impedance control, allowing the robot to adjust its compliance based on the task. 

Impedance control is especially useful for applications requiring different levels of stiffness, compliance, or damping, as it enables the robot to switch seamlessly between various tasks and environments. Furthermore, to enhance safety, ensuring a safe working environment, the arm is reactive to external disturbances while maintaining the target position as an objective.

Impedance control is based on effort control by closing the loop in position to achieve more adaptable and versatile robotic behaviour in various applications, from industrial automation to medical robotics.

With the inclusion of gravity compensation, operating the robot’s arm becomes a seamless endeavour, allowing for precise movement as it dynamically adjusts motor force to maintain its position. Additionally, the robot features a learning by demonstration functionality, employing the gravity compensation mode to facilitate the physical instruction of new tasks. 

CANOPIES: Revolutionising Agriculture and Beyond

CANOPIES is the first attempt to introduce a collaborative prototype in precision agriculture for permanent crops. The overall goal of the EU research project CANOPIES project is to develop a robotic prototype in crop farming (Agri-Food) that addresses the challenges of Human-Robot Interaction and Human-Robot Collaboration. 

PAL Robotics’ main role in this project is to provide the upper body of the agricultural robot demonstrator, formed from the TIAGo++ dual-armed robot, which has been placed on top of the Alitrack base, provided by The Sapienza University of Rome. 

The agronomically adapted dual arm design is also accompanied by custom CANOPIES gripper designs that will allow the execution of the harvesting and pruning tasks. In addition, these alterations will allow CANOPIES to operate the robot in compliant control, making it more suitable for human workers to share their workspace with the robot. 

This adapted agricultural robot design for CANOPIES will prevent exerting any strong force against obstacles or people, which is also very useful to other fields of application, such as healthcare, retail, and agile manufacturing.

During the project tests were held in an agricultural cooperative named “Cooperativa Agricola Corsira”, a community of roughly 20 small producers in Aprilia, Lazio, Italy. The challenge here was that using robotics for harvesting and pruning requires the development of complex robotic processes of perception, communication, shared planning in agreement, prediction of human intentions, interaction, and action.

To learn about the SEA arm and various upgrades available for TIAGo, don’t hesitate to contact us. If you would like to find out more about TIAGo and the new software packages available, read our recent blog post on the advanced grasping premium software package. 

Related articles
A man in a grey shirt and face mask is shaking hands with a humanoid robot named ARI in a modern lobby. The robot is white and orange, designed with a sleek, futuristic aesthetic. The background features a reception desk with the logo 'Inria' and a glass ceiling that lets in natural light.
Read More

Assistive Robots in Healthcare – Reflecting on the Success of the SPRING Project

As the EU funded project SPRING reaches the end, we, at PAL Robotics, are proud to reflect on our participation…
SAFE-LY Project: Improving Patient Safety with Healthcare Robotics
Read More

SAFE-LY Project: Improving Patient Safety with Healthcare Robotics

The healthcare sector is increasingly recognising the importance of robotics in enhancing patient safety and care. With the global healthcare…
PROCARED blog by PAL Robotics
Read More

PRO-CARED pilots: robot ARI as education robot helping students with Catalan language

Integrating robots into education brings a number of potential benefits to the sector, such as enhancing the learning experience for…