

TECHNICAL SPECIFICATIONS

GENERAL FEATURES

Height	Weight	Footprint	Max Autonomy	Speed	Arm DoF
120 - 150 cm	96 kg	50 x 72 cm	8 - 10h	1.5 m/s	2x 7

TIAGo Pro

Next Generation of Mobile Manipulators

Achieve accuracy and compliance with the enhanced manipulation capabilities of the series elastic actuator arms. Tackle complex tasks with ease thanks to the user-friendly interface. Experience the power of seamless interaction, optimal arm mounting, and increased reach in a compact and modular design. Engage in Human-Robot Interaction thanks to the new design with LEDs, screen, and RGB-D camera.

CONFIGURATION

Omnidirectional drive	✓	
Navigation laser	2x 10m LIDAR (25m optional) Front and back for 360° FoV	
Lifting torso	✓	
Pan-tilt head	✓	
End-effectors	2x Parallel Grippers	
Arm Joint Brakes	✓	
Actuation	Series Elastic Actuators	

TECHNICAL SPECIFICATIONS

UPPER BODY	Arm payload	3kg
	A non no o ob	0/

Arm reach 96 cm
Torso lift 35 cm
Arm Mounting flange ISO 9409-1

MOBILE BASE Omnidirectional Drive 4x Meccanum Wheels

Max speed1.5 m/s All directionsOperational environmentIndoor

CONNECTIVITY Ethercat Bus 1 KHz

Wifi 802.11ax Wi-Fi 6
Bluetooth Smart 4.0

ELECTRICAL Battery 36V 20Ah1 battery / 2 batteries **FEATURES Battery autonomy**4-5 h / 8-10 h

SENSORS Base 2x 10m LIDAR (25m optional) Front and back for 360° FoV

Encoders Input & output in all joints

Head RGB-D camera

AUDIO Speakers 8W Stereo

Microphone 4x Microphone array

 COMPUTER
 CPU
 Intel i5 / i7

 RAM
 8 GB / 16 GB

SSD 250 GB / 500 GB

SOFTWARE OS Ubuntu LTS 64-bits, RT Preempt

Open source middleware ROS LTS

Arm joint control Position / Velocity / Current / Impedance

INTEGRATED Laptop tray

Joystick teleoperations

Upper body motions10 pre-programmed

Interactive face for HRI Speakers

Microphones
Programmable LEDs

Emotion personalisation Face screen

User panel On/Off Button & Battery Indicator
Ports 1x GbE / 2x USB 3 / 1x HDMI

Power supply 12V / 5A
Emergency button ✓

OPTIONALS GPU NVIDIA Jetson PC

CORE SOFTWARE

Free simulation and tutorials at wiki.ros.org/Robots/TIAGo

CORE SOFTWARE	Operating system	Ubuntu LTS 64-bit RT Preempt RT framework	
	Middleware	Robot Operating System (ROS2) LTS	
USER INTERFACES	Web Commander	Diagnosis of software, actuators and sensors Text-to-speech triggering Execution of pre-recorded motions Execution of demonstrations	
	Joystick teleoperation	Mobile base control Head control Torso lift control Execution of pre-recorded motions	
NAVIGATION	Core Navigation package	Laser based self-localization and mapping (SLAM) Navigation to a point of a map Obstacle avoidance using laser sensors Available RViZ Plugin to navigation to a point in a map	
HUMAN-ROBOT INTERACTION	Text-to-speech	TTS software with one language and one voice Triggered via Web-Based robot interface	
	Robot Sensor visualization	Available RViZ Plugins for camera and lasers	

CORE SOFTWARE

Free simulation and tutorials at wiki.ros.org/Robots/TIAGo

CONTROL

ros2 control Full ros control compatibility

Hardware-agnostic controller written as ros_control plugins

Point level control in position, velocity and effort Supported hardware interfaces: position and effort

Joint trajectory controller (default): ros2_controllers

Command joint-wise trajectories to groups of joints

(arm, head and torso)

Default stack of controllers Command individual joints

Available QT-based GUI

Gravity compensation controller:

Arm position maintained compensating gravity

Compliant behaviour of the arm

Omnidirectional drive controller:

Velocity-based controller for the mobile base

Available RViZ Plugin to navigation to a point in a map

Upper body motions

play_motion

Pre-recorded motions handling

Allows execution with planning and self-collision avoidance

play_motion_builder

Generation of pre-recorded motions

Available QT-based GUI

Movelt2

Fully integration that works off-the-shelf

Motion generation with path planning and self-collision avoidance

Available RViz Plugins

