KANGAROO

TECHNICAL SPECIFICATIONS

Height 1.45m (CoM 0.88m)	Weight 40 k (12.5 per leg)	DoF 6 actuated po	er leg	Ball screw actuators with Force Sensor
ROS BASED	SIMPLIFIED AND FULL URDF MODELS		PROGRAMMABLE ELECTRONICS	

Strong and durable research platform

Able to handle highly dynamic experiments and acrobatic motions.

Kangaroo robot is a bipedal robot research platform to explore advanced control methods for legged locomotion. The robot is lightweight with low moving inertia in the legs and suitable for highly dynamic motions such as jumping and running.

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347

business@pal-robotics.com pal-robotics.com

KANGAROO

TECHNICAL SPECIFICATIONS

Actuators

Kangaroo incorporates custom linear actuators located close to the hip of the robot, providing a wide range of motion as well as high speed and torques at the joints.

Joints

The non-linear transmission parameters have been optimised to achieve the necessary speeds and torques for jumping requiring only low power while standing and walking.

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347

business@pal-robotics.com pal-robotics.com

HARDWARE SPECIFICATIONS

ACTUATORS	Cont. force	Max force	Max speed	Nom. power	Max. power
Hip yaw	600 N	2 kN	0.4 m/s	230 W	400 W
Hip act 1	600 N	2 kN	0.4 m/s	230 W	400 W
Hip act 2	600 N	2 kN	0.4 m/s	230 W	400 W
Leg Length act	1450 N	5 kN	0.625 m/s	870 W	1600 W
Ankle act 1	600 N	2 kN	0.4 m/s	230 W	400 W
Ankle act 2	600 N	2 kN	0.4 m/s	230 W	400 W

JOINTS	Min. pos	Max. pos	Max speed	Max. torque/force (equivalent)
Hip Yaw	-15°	45°	8 rad/s	80 Nm
Hip Roll	-25°	+25°	9 rad/s	130 Nm
Hip Pitch	-42.5°	+42.5°	6 rad/s	230 Nm
Leg Length	0.132 m	0.715 m	3 m/s	1400 N
Ankle Pitch	-42.5°	42.5°	9 rad/s	140 Nm
Ankle Roll	-25°	25°	15 rad/s	80 Nm

Strong and durable research platform

Scan the QR code for more information

planning and control software architecture

New frontiers of parallel robotics

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347

business@pal-robotics.com pal-robotics.com