

GENERAL FEATURES

Height 110 - 145 cm Weight 70 kg

Footprint Ø54 cm

DEGREES OF FREEDOM (DoF)

Torso Lift	Mobile Base	Arm (0/2X)	Head
1	2	7	2

Build your own TIAGo

	LITE	TIAGo	++
Differential drive	\checkmark	\checkmark	\checkmark
Omnidirectional drive	Optional	Optional	Optional
Navigation laser	5.6 m (upgradable to 10 m, 25 m)	5.6 m (upgradable to 10 m, 25 m)	5.6 m (upgradable to 10 m, 25 m)
Lifting torso	\checkmark	\checkmark	\checkmark
Pan-tilt head	\checkmark	\checkmark	~
7 DoF arm	—	1	2
Default end-effector	_	Parallel Gripper	Parallel Gripper
Force/Torque sensor	_	Optional	Optional
Touchscreen monitor	Optional	_	Optional

* Upgrade kits available in order to evolve your version. The robot's configuration may change without previous notice

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347

Free simulation and tutorials at wiki.ros.org/Robots/TIAGo

BODY	Arm payload (at full extension) Arm reach Torso lift	3kg (without end-effector) 87 cm (without end-effector) 35 cm	
MOBILE BASE	Drive Max. speed Operational environment	Differential / Omnidirectional <i>(optional)</i> 1.5 m/s Indoor	
CONNECTIVITY	Wireless connectivity	802.11ax Wi-Fi 6 Bluetooth 4.0	
ELECTRICAL FEATURES	Battery 36V 20Ah Battery autonomy	1 battery / 2 batteries 4 - 5 h / 8 - 10 h	
SENSORS	Base IMU (Base) Motors Head	Laser 5.6 m / 10 m / 25 m range, rear sonars 3x1m range 6DoF Actuators current feedback RGB-D camera	
AUDIO	Speakers Microphone	2 x 5 W audio speaker 2x microphone array with stereo output 50-8000Hz	
COMPUTER	CPU RAM SSD	Intel i5 / i7 8 GB / 16 GB 250 GB / 500 GB	
SOFTWARE	OS Open source middleware Periodic update/patches Arm control mode	Ubuntu LTS 64-bits, RT Preempt ROS LTS ✓ Position / velocity / effort control	
SUPPORT	Training and maintenance Online helpdesk	On demand	
EXTENSIBILITY	Laptop tray Mounting points USB ports Ethernet ports Power suppply Service panel	 On head, laptop tray and mobile base 1x USB 3.0, 1x USB 2.0 2x GbE (Gigabit Ethernet) 12 V / 5 A HDMI, USB 3.0 	
OPTIONALS	End-effector Wrist sensor Dock station Touchscreen Al Kit End-effector Camera	Hey5 Hand / PAL gripper / Robotiq™ 2F 85 / 140 / EPick / Your ow 6 axis Force/Torque sensor ✓ ✓ NVIDIA® Jetson™ TX2 Add-on Endoscopic	
	C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347	business@pal-robotics.com pal-robotics.com	

CORE SOFTWARE	Operating system	Ubuntu LTS 64-bit RT Preempt RT framework
	Middleware	Orocos Robot Operating System (ROS) LTS
USER INTERFACES	Web Commander	Diagnosis of software, actuators and sensors Text-to-speech triggering Execution of pre-recorded motions Execution of demonstrations
	Joystick teleoperation	Mobile base control Head control Torso lift control Execution of pre-recorded motions
NAVIGATION	Core Navigation package	Laser based self-localization and mapping (SLAM) Navigation to a point of a map Obstacle avoidance using laser sensors Available RViZ Plugin to navigation to a point in a map
HUMAN-ROBOT INTERACTION	Text-to-speech	TTS software with one language and one voice Triggered via Web-Based robot interface
	Robot Sensor visualization	Available RViZ Plugins for camera, lasers and sonars Available RViZ Plugins for IMU and Force/Torque sensors

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347

wiki.ros.org/Robots/TIAGo

CONTROL	ros_control	Full ros_control compatibility Hardware-agnostic controller written as ros_control plugins Point level control in position, velocity and effort Supported hardware interfaces: position and effort
	ros_controllers	Joint trajectory controller (default): Command joint-wise trajectories to groups of joints (arm, head and torso)
	Default stack of controllers	Command individual joints Available QT-based GUI Gravity compensation controller: Arm position maintained compensating gravity Compliant behaviour of the arm Differential drive controller:
		Velocity-based controller for the mobile base Available RViZ Plugin to navigation to a point in a map
	Upper body motions	 play_motion Pre-recorded motions handling Allows execution with planning and self-collision avoidance play_motion_builder Generation of pre-recorded motions Available QT-based GUI Movelt! Fully integration that works off-the-shelf Motion generation with path planning and self-collision avoidance Available RViz Plugins
		Available RVIZ Plugins

🔮 ubuntu

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347

CONTROL	Whole Body Control Package	Controller based on a quadratic solver that solves a hierarchical set of tasks Provides on-line inverse kinematics of the robot's upper body (arm, torso, head)		
		Default stack of tasks contains: Self-collision avoidance Joint limit avoidance		
		Allows for: Cartesian Gaze control Cartesian control of end-effector Admittance compliant control (if there is F/T sensor) Joint space control of upper body Compliant behaviour of the arm		
	Visual Programming Package	Intuitively programming the robot with a block based drag-and-drop graphical interface based on behaviour trees		
		Monitor robot's state and diagnostics in real time, including current status of: battery, network, volume, and emergency button, naviga- tion mode		
		Easy access to pre-recorded motions and speeches		
		Creation of buttons that trigger robot motions or speech		
NAVIGATION	Advanced Navigation Package	Obstacle avoidance using RGB-D head camera Navigation to points of interest (PoI) or through a sequence of PoI		
		Detection of zones of interest (ZoI) (topological localization)		
		Avoidance of virtual obstacles / forbidden regions		
		Map Editor: Download / Upload maps in the robot Add virtual obstacles, forbidden regions, Pol, Zol Graphical joystick to control the robot in the map		

Free simulation and tutorials at wiki.ros.org/Robots/TIAGo

HUMAN-ROBOT INTERACTION	Text-to-speech	Add extra languages and voices	
	Facial Perception	Face detection, face maching, face tracking	
	Package	Recognition of 6 basic emotions	
		Recognition of Facial features	
	Automatic Speech	Google Cloud Speech API off-the-shelf integration	
	Recognition Package	Provides ASR for over 125 languages and variants	
	Animation Interface	Creation and edit of new motions with the arm, head, and torso:	
	Package	Arm, head, and torso: Joint by joint via sliders	
		 Arm: moving the robot manually in gravity compensation mode 	
		Building new presentations that combine robot speech, and motions	
		Monitor the robot's state and diagnostics in real time, including	
		current status of: battery, network, volume, and emergency button,	
		current status of: battery, network, volume, and emergency butt navigation mode	
		Easy access to pre-recorded motions and speeches	
		Creation of buttons that trigger robot motions or speech	
	Advanced Grasping Package	Perform complex grasping tasks combining behaviour trees and Movelt!	
		Based on server-client structure implemented with ROS Actions,	
		using action servers:	
		Perception server	
		Grasp server	
		Place server	
		Custom servers	
		Detect objects based on basic shapes and colour	
		Customisation of parameters:	
		Grasp candidate	
		Object detection	
		General configuration (behaviour trees and actions)	
		Two out-of-the-box demos:	
		Stack cubes	
		• Clear table	

Customize TIAGo

ONE ROBOT, ENDLESS POSSIBILITIES

Adapt TIAGo to your research needs by customizing it from start with its countless expansion possibilities. PAL Robotics offers a catalog of add-ons to expand TIAGo's capabilities and opens the door to let you easily connect your own devices on it. Adjust your robot to your needs, and turn TIAGo into your best research companion!

ARTIFICIAL INTELLIGENCE KIT

NVIDIA[®] Jetson[™] TX2

The perfect kit for Artificial Intelligence applications or Machine Learning developments. Integrate an NVIDIA[®] Jetson[™] TX2 Kit into TIAGo and benefit from one of the fastest and most power-efficient computing devices so nothing stops your algorithms. Explore the potential of the AI and robotics synergy.

Start implementing AI-based applications with TIAGo!

YOUR WAY OF SENSING

Equip TIAGo with the sensors and devices needed to easily perceive the environment as you require. We know each research field demands a specific way of seeing the world.

GRIPPER CAMERA

THERMAL CAMERA

YOUR OWN SENSORS

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347

Customize TIAGo

GRAPHICAL INTERFACE

Broaden TIAGo's applications and interaction skills with a graphical interface!

TOUCHSCREEN

An integrated touchscreen can be a useful means for commanding TIAGo, interacting with it, or checking the robot's state.

ANDROID TABLET

An Android tablet installed on top of TIAGo's head. Android apps and webbased interfaces open new possibilities to give orders to TIAGo, trigger a task or understand the robot's status.

TAILORED GRASPING

Use the End-effector that fits your needs:

Parallel Gripper
• Current limit control
• 2 DoF

· Gripper camera optional

Hey5 Hand* · Current limit control · 19 DoF (3 actuated)

Robotiq™ 2F 85/140

- · Current limit control
- Gripper encompass objects
 No current consumption
- to stay in fixed position

Robotiq[™] EPick · Electrical vacuum generator · Standard suction cups

(*) Developed by PAL Robotics S.L., with contributions from QBrobotics srl. The Hey5 hand is a derivative of the "Pisa/IIT SoftHand" open source project by M. G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza and A. Bicchi, distributed under Creative Commons Attribution 4.0 International License and available at NaturalMachineMotionInitiative.com

ADD YOUR ADD-ON!

Expansion Panel

Connect microphones, cameras, any sensor or device you want to TIAGo, and widen your robot's abilities right the way you need it.

Mounting Points

TIAGo has mounting points on its head, laptop tray and mobile base to handily fix the equipment on its body.

Laptop Tray

Connect your laptop to its onboard computer through the expansion panel. The tray is also an adequate surface to permanently add new devices.

TIAGo OMNI BASE

2 LiDAR Sensor for an unobstructed 360° FOV secure movement, it can include autonomous navigation, obstacle detection and path planning.

Learn more

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347