

GENERAL FEATURES

DEGREES OF FREEDOM (DoF)

Height	Weight
110 - 145 cm	70 kg

Footprint Ø54 cm

Torso Lift

| Mobile Base | Arm (0/2X) | Head 7

2

Build your own TIAGo

++

	LITE	TIAGo	++
Differential drive	✓	✓	✓
Omnidirectional drive	Optional	Optional	Optional
Navigation laser	5.6 m (upgradable to 10 m, 25 m)	5.6 m (upgradable to 10 m, 25 m)	5.6 m (upgradable to 10 m, 25 m)
Lifting torso	✓	✓	✓
Pan-tilt head	✓	✓	✓
7 DoF arm	_	1	2
Default end-effector	_	Parallel Gripper	Parallel Gripper
Force/Torque sensor	_	Optional	Optional
Touchscreen monitor	Optional	_	Optional

^{*} Upgrade kits available in order to evolve your version. The robot's configuration may change without previous notice

Free simulation and tutorials at wiki.ros.org/Robots/TIAGo

BODY	Arm payload (at full extension) Arm reach Torso lift	3kg (without end-effector) 87 cm (without end-effector) 35 cm
MOBILE BASE	Drive Max. speed Operational environment	Differential / Omnidirectional (optional) 1.5 m/s Indoor
CONNECTIVITY	Wireless connectivity	802.11ax Wi-Fi 6 Bluetooth 4.0
ELECTRICAL FEATURES	Battery 36V 20Ah Battery autonomy	1 battery / 2 batteries 4 - 5 h / 8 - 10 h
SENSORS	Base IMU (Base) Motors Head	Laser 5.6 m / 10 m / 25 m range, rear sonars 3x1m range 6DoF Actuators current feedback RGB-D camera
AUDIO	Speakers Microphone	2 x 5 W audio speaker 2x microphone array with stereo output 50-8000Hz
COMPUTER	CPU RAM SSD	Intel i5 / i7 8 GB / 16 GB 250 GB / 500 GB
SOFTWARE	OS Open source middleware Periodic update/patches Arm control mode	Ubuntu LTS 64-bits, RT Preempt ROS LTS Position / velocity / effort control
SUPPORT	Training and maintenance Online helpdesk	On demand ✓
EXTENSIBILITY	Laptop tray Mounting points USB ports Ethernet ports Power suppply Service panel	On head, laptop tray and mobile base 1x USB 3.0, 1x USB 2.0 2x GbE (Gigabit Ethernet) 12 V / 5 A HDMI, USB 3.0
OPTIONALS	End-effector Wrist sensor Dock station Touchscreen Al Kit	Hey5 Hand / PAL gripper / Robotiq [™] 2F 85 / 140 / EPick / Your own 6 axis Force/Torque sensor ✓ NVIDIA® Jetson [™] TX2 Add-on

CORE	
SOFTWARE	

Operating system

Ubuntu LTS 64-bit

RT Preempt RT framework

Middleware

Orocos

Robot Operating System (ROS) LTS

USER INTERFACES

Web-Based Interface

Diagnosis of software, actuators and sensors

Text-to-speech triggering

Execution of pre-recorded motions

Execution of demonstrations

Joystick teleoperation

Mobile base control

Head control

Torso lift control

Execution of pre-recorded motions

NAVIGATION

Core Navigation package

Laser based self-localization and mapping (SLAM)

Navigation to a point of a map

Obstacle avoidance using laser sensors

Available RViZ Plugin to navigation to a point in a map

HUMAN-ROBOT Text-to-speech **INTERACTION**

TTS software with one language and one voice

Triggered via Web-Based GUI

Robot Sensor visualization

Available RViZ Plugins for camera, lasers and sonars

Available RViZ Plugins for IMU and Force/Torque sensors

Free simulation and tutorials at wiki.ros.org/Robots/TIAGo

CONTROL

ros_control Full ros_control compatibility

Hardware-agnostic controller written as ros_control plugins

Point level control in position, velocity and effort

Supported hardware interfaces: position and effort

ros_controllers Joint trajectory controller (default):

Command joint-wise trajectories to groups of joints

(arm, head and torso)

Default stack of controllers Command individual joints

Available QT-based GUI

Gravity compensation controller:

Arm position maintained compensating gravity

Compliant behaviour of the arm

Differential drive controller:

Velocity-based controller for the mobile base

Available RViZ Plugin to navigation to a point in a map

Upper body motions

play_motion

Pre-recorded motions handling

Allows execution with planning and self-collision avoidance

play_motion_builder

Generation of pre-recorded motions

Available QT-based GUI

MoveIt!

Fully integration that works off-the-shelf

Motion generation with path planning and self-collision avoidance

Available RViz Plugins

Free simulation and tutorials at wiki.ros.org/Robots/TIAGo

USER INTERFACES

Leap motion

Fully integrated Leap motion sensor

Allows to teleoperate:

7 DoF Arm

Torso

Hey5-hand / parallel / Robotiq / other grippers

CONTROL

Whole body control package

Controller based on a quadratic solver that solves

a hierarchical set of tasks

Provides on-line inverse kinematics of the robot's upper body

(arm, torso, head)

Default stack of tasks contains:

Self-collision avoidance
Joint limit avoidance

Allows for:

Cartesian Gaze control

Cartesian control of end-effector

Admittance compliant control (if there is F/T sensor)

Joint space control of upper body Compliant behaviour of the arm

NAVIGATION

Advanced navigation package

Obstacle avoidance using RGB-D head camera

Navigation to points of interest (PoI) or through a sequence of PoI

Detection of regions of interest (RoI) (topological localization)

Avoidance of virtual obstacles / forbidden regions

Map Editor:

Download / Upload maps in the robot

Add virtual obstacles, forbidden regions, Pol, Rol Graphical joystick to control the robot in the map

HUMAN-ROBOT INTERACTION

Text-to-speech

Add extra languages and voices

Facial perception package

Face detection, face maching, face tracking

Recognition of 6 basic emotions Recognition of Facial features

Automatic speech recognition package

Google Cloud Speech API off-the-shelf integration Provides ASR for over 125 languages and variants

ONE ROBOT, ENDLESS POSSIBILITIES

Adapt TIAGo to your research needs by customizing it from start with its countless expansion possibilities. PAL Robotics offers a catalog of add-ons to expand TIAGo's capabilities and opens the door to let you easily connect your own devices on it. Adjust your robot to your needs, and turn TIAGo into your best research companion!

ARTIFICIAL INTELLIGENCE KIT

NVIDIA® Jetson™ TX2

The perfect kit for Artificial Intelligence applications or Machine Learning developments. Integrate an NVIDIA® Jetson TM TX2 Kit into TIAGo and benefit from one of the fastest and most power-efficient computing devices so nothing stops your algorithms. Explore the potential of the AI and robotics synergy.

Start implementing Al-based applications with TIAGo!

YOUR WAY OF SENSING

Equip TIAGo with the sensors and devices needed to easily perceive the environment as you require. We know each research field demands a specific way of seeing the world.

GRIPPER CAMERA

THERMAL CAMERA

YOUR OWN SENSORS

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347

business@pal-robotics.com pal-robotics.com

Customize TIAGo

GRAPHICAL INTERFACE

Broaden TIAGo's applications and interaction skills with a graphical interface!

TOUCHSCREEN

An integrated touchscreen can be a useful means for commanding TIAGo, interacting with it, or checking the robot's state.

ANDROID TABLET

An Android tablet installed on top of TIAGo's head. Android apps and webbased interfaces open new possibilities to give orders to TIAGo, trigger a task or understand the robot's status.

TAILORED GRASPING

Use the End-effector that fits your needs:

Parallel Gripper

- · Current limit control
- · 2 DoF
- · Gripper camera optional

Hey5 Hand*

- · Current limit control
- · 19 DoF (3 actuated)

Robotiq™ 2F 85/140

- · Current limit control
- · Gripper encompass objects
- · No current consumption to stay in fixed position

Robotiq™ EPick

- · Electrical vacuum generator
- · Standard suction cups

(*) Developed by PAL Robotics S.L., with contributions from QBrobotics srl. The Hey5 hand is a derivative of the "Pisa/IIT SoftHand" open source project by M. G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza and A. Bicchi, distributed under Creative Commons Attribution 4.0 International License and available at NaturalMachineMotionInitiative.com

ADD YOUR ADD-ON!

Expansion Panel

Connect microphones, cameras, any sensor or device you want to TIAGo, and widen your robot's abilities right the way you need it.

Mounting Points

TIAGo has mounting points on its head, laptop tray and mobile base to handily fix the equipment on its body.

Laptop Tray

Connect your laptop to its onboard computer through the expansion pane. The tray is also an adequate surface to permanently add new devices.

TIAGO OMNI BASE

TIAGo Omni Base is available with 4 drive mecanum wheels, and 2 LiDAR Sensor for an unobstructed 360° FOV secure movement, it can include autonomous navigation, obstacle detection and path planning. Move and navigate the omnidirectional base with ease thanks to its precision positioning in constrained environments.

C/ Pujades 77-79 08005 Barcelona, Spain Tel: +34 934 145 347